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Abstract. We propose a model of an underlying mechanism responsible for the formation of assortative
mixing in networks between “similar” nodes or vertices based on generic vertex properties. Existing models
focus on a particular type of assortative mixing, such as mixing by vertex degree, or present methods of
generating a network with certain properties, rather than modeling a mechanism driving assortative mixing
during network growth. The motivation is to model assortative mixing by non-topological vertex properties,
and the influence of these non-topological properties on network topology. The model is studied in detail
for discrete and hierarchical vertex properties, and we use simulations to study the topology of resulting
networks. We show that assortative mixing by generic properties directly drives the formation of community
structure beyond a threshold assortativity of r ∼ 0.5, which in turn influences other topological properties.
This direct relationship is demonstrated by introducing a new measure to characterise the correlation
between assortative mixing and community structure in a network. Additionally, we introduce a novel type
of assortative mixing in systems with hierarchical vertex properties, from which a hierarchical community
structure is found to result.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and
organization in complex systems

1 Introduction

1.1 Aims and motivation

The modeling of networks and complex systems has re-
cently developed into a highly-active area of research, with
studies focusing on a range of properties of these sys-
tems. Some network properties have received particular
attention, such as the degree distribution [1,2], cluster-
ing or transitivity [3,4], and the so-called “small-world
effect” [5,6]. The models and theories developed can typ-
ically be applied to networks in a wide range of fields,
including technological networks such as the Internet
and the world-wide web [7,8], social networks of vari-
ous kinds [9,10], and biological networks (e.g. genetic,
metabolic and neural) [11–13].

The majority of models developed consider the indi-
vidual elements which make up the system (nodes or ver-
tices of the network) as abstract entities, and thus the
models are easily extensible to many network types, as
described above. However, the behaviour and dynamics of
real networks is a function of both the network topology,
and the attributes or properties of the elements of the sys-
tem. It is well-known that network edges do not connect
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to vertices independent of their properties or attributes,
but relatively few models explicitly take this into account.
In recent years, this phenomenon has received more atten-
tion, and a measure of the tendency of vertices to be con-
nected to others which are “similar” or like them in some
way is often referred to as assortative mixing, a term orig-
inated in the ecology and epidemiology literature [14]. A
closely related term is the homophily, which is often only
used in the social literature, where this concept is most
well recognised and understood [15]. Homophily measures
the driving force behind this tendency, and assortativity
measures the extent of mixing between “similar” vertices
in a given network.

A specialised and well-recognised type of assortative
mixing is that of mixing by vertex degree. Data on de-
gree assortativity is readily available since no additional,
non-topological data is required in order to calculate the
degree assortativity of a network. It has been shown that
the degree assortativity depends to a large extent on the
type or classification of the network. Social networks tend
to be assortative (where high degree vertices tend to con-
nect to other high degree vertices, and vice versa), whereas
biological and technological networks tend to be disassor-
tative (where high degree vertices tend to connect to low
degree vertices) [16]. The degree assortativity of a network
has a number of interesting ramifications on the network
robustness, which is a critical problem in many areas of
research [17–19].
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Many other vertex properties may also exhibit assor-
tative mixing in a network, other than the vertex degree.
For example, in social networks properties which may
show assortative mixing include race, sex, language, and
age [20,21]. Although less studied, assortative mixing oc-
curs in many network types, such as by page content in
the world-wide web [22], by protein function in a protein-
protein interaction network [23], and by location for spa-
tially distributed networks amongst others. Vertex prop-
erties may be either inherent and independent of network
topology (e.g. world-wide web content, or social charac-
teristics such as sex, age), while others are only meaning-
ful in the context of the network (such as vertex degree
and biological function, to a good approximation). Fur-
thermore, other properties such as language and race al-
though meaningful outside the context of the network, are
primarily influenced by network topology, since the forma-
tion of communities has given rise to different languages
and races. In the case of biological function, we antici-
pate that there are many inherent properties which show
assortative mixing and influence network growth, but re-
main less clearly defined or understood than many vertex
properties in social networks.

One of the fundamental premises of network research
is that network topology reflects information or properties
of the vertices in some way, but so far this aspect of real
networks has recieved little attention. Without an explicit
consideration of such vertex properties, network models
cannot explain certain aspects of network topology which
are due to vertex properties, nor can they explain the dis-
tribution or assortativity of these properties within a net-
work. Recent work has showed that it is possible to derive
meaningful values of vertex similarity, based on generic
properties, from network topology for both simulated and
real networks [24]. Our aim is to model the tendency of
vertices to link to similar vertices based on their inher-
ent non-topological properties, and study the influence of
these properties on network topology. We show that this
tendency or homophily leads to assortative mixing, which
beyond a threshold leads to the formation of community
structure, which in turn influences other topological prop-
erties. Furthermore we demonstrate the correlation be-
tween these non-topological properties and network topol-
ogy in the resulting networks.

In summary, we present a model for a realistic mech-
anism by which assortative mixing arises during network
growth. The model is presented in a generic form, such
that it can potentially be applied to any type or classi-
fication of network, and for any type of assortative mix-
ing. We also present a new type of assortative mixing for
vertex properties which are represented using a hierarchi-
cal classification tree. The current model considers mixing
by properties inherent to vertices, and whose values are
static during network growth, which allows for a clearer
characterisation of the influence of vertex properties and
assortative mixing on network topology. A more complex
model may allow vertex properties to change during net-
work growth, or an alternative model could consider prop-
erties which are determined solely or primary by network

topology. Note that we use the term “assortative mixing”
to refer to mixing by generic, non-topological properties,
as used for example by Newman [25]. Due to the preva-
lence of studies of degree assortativity, assortative mixing
is often assumed to refer to this specific type of mixing,
but we do not refer to degree assortativity when using this
term, unless otherwise stated.

Due to the complexities of real networks, an applica-
tion of such a generic model is a complex problem for a
given real network or system of networks. Multiple prop-
erties typically influence topology in real networks, and we
use the generic model to study how such properties may
influence topology due to assortative mixing. In most ar-
eas of network science, a detailed understanding of which
vertex properties are significant and how these may influ-
ence topology is many years away, for example in social
networks or systems biology. A generic model can be used
to help to develop the understanding of the dependen-
cies between vertex properties and network topology for
a given type of real network. We plan to apply the model
initially to relatively simple systems in future work.

It is known that assortativity is one mechanism which
can account for the formation of community structure in
a network [26]. We reproduce this observation for the pro-
posed model, and study the correlation between assorta-
tive mixing and community structure in detail. The extent
of community structure in a network is measured using
the algorithm of Newman and Girvan [27]. Community
structure is an important aspect of network topology, and
is responsible in part for the high clustering coefficients
observed in many real network systems [28].

Some existing models of assortative mixing define a
method to produce a network with a given assortativity,
but do not model a realistic mechanism for how assortativ-
ity arises in a real network system. An advantage of such
models is that they are often more analytically tractable,
using the techniques of statistical physics for the analy-
sis of network ensembles. For example, the method de-
fined in [26] generates a network with a known mixing
pattern, and for any specified degree distribution for each
vertex type. If the mixing pattern is known, it may be
possible to derive an exact expression for the assortativity,
as has been shown for a symmetric binomial mixing pat-
tern [16]. Kim et al. generalised a static model motivated
for social networks in which a fixed number of vertices
are assigned weights, which can generate networks with
assortative mixing while reproducing a power-law degree
distribution [29].

Other studies have defined more realistic mechanisms
for the formation of assortative mixing in networks, but
are specific to either a certain network type or classifi-
cation (e.g. social networks), or specific to a type of as-
sortativity (e.g. degree assortativity). Boguñá et al. pre-
sented a model of social networks using a preferential
attachment rule between vertices based only on their so-
cial distance, which reproduced many characteristics of
real social networks, including community structure [30].
Catanzaro et al. defined a model of assortative mixing in
social networks which is closer to the model proposed in
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this paper [31,32]. Their model was based on the Barabási-
Albert (BA) preferential attachment rule [33], but there
was no consideration of other aspects of network topology
produced by the model, specifically the community struc-
ture. Yang et al. described a bipartite network model in
which each type of vertex exhibits a power-law degree dis-
tribution, with tunable mixing between the two types [34].

Alternative mechanisms for the formation of assorta-
tive mixing by degree have also been developed, other
than due to the homophily between vertices with simi-
lar degree. Onody and Castro studied a non-linear version
of the BA preferential attachment rule, and showed that
the resulting networks may be assortative or disassorta-
tive (or show no assortative mixing) depending on the
power of the vertex degree in the preferential attachment
rule [35]. Xulvi-Brunet and Sokolov added a rewiring step
after each preferential attachment step, and were able to
generate networks with any required assortativity, from no
assortative mixing to totally assortative [36]. This type of
rewiring was originally proposed to generate random net-
works with an exact degree distribution for comparison
with hierarchical networks [37]. We use a similar idea in
the current model when considering the assortativity of
properties which are network dependent, and not inher-
ent to a vertex.

2 Model and methods

The governing equation of the network growth model pre-
sented below is a combination of two preferential attach-
ment rules, one of which is a function of vertex degree,
and the other a function of vertex properties. For sim-
plicity we implement the model using the standard BA
preferential attachment rule for the function of vertex de-
gree, and use the same basic implementation of network
growth [33]. That is, starting with a small number m0 of
vertices, we add a vertex to the network at each time step,
and add m ≤ m0 edges between the new vertex and exist-
ing vertices in the network. However, we define the model
in terms of a generalised function of vertex degree, since it
has been shown that alternative attachment rules provide
more accurate models of many real networks. A non-linear
preferential attachment [38], and the inclusion of vertex
“attractiveness” such that new vertices may attach to iso-
lated vertices with a non-zero probability [39] are just two
examples of alternative attachment rules. Preferential at-
tachment by vertex degree can be expressed as,

Π(kj) =
f(kj)∑
l f(kl)

, (1)

where Π is the probability that a new vertex i will link to
an existing vertex j in a network, and kj is the degree of
vertex j, summing over all l vertices in the network. The
BA preferential attachment rule given by,

Π(kj) =
kj∑
l kl

, (2)

is a specific case of the generalised preferential attachment
by vertex degree given in equation (1). We define the pref-
erential attachment by vertex properties in terms of the
“similarity” xij of vertices i and j,

Π(xij) ∝ e−α(1−xij), (3)

where α > 0 is a tunable parameter which we call the ho-
mophily, vertex similarity xij is defined within the range
0 < xij < 1, and the probability Π is a function of ver-
tex similarity. The precise definition of vertex similarity
depends on the type of vertex property being considered,
and is defined in detail in Sections 2.1 to 2.3. An expo-
nential dependency is chosen in order to assign an appro-
priate weighting to the vertex similarity, and since this
form of dependency has been used in a number of closely
related studies, including a model of degree assortativ-
ity [31]. Watts et al. used an exponential variation to
model social distance in the context of network search [40].
Bianconi and Barabási developed a fitness model with an
exponential dependency on vertex fitness [41,42]. The ex-
pression used in their study is similar in form to the model
defined in equation (3), but vertex fitness and similarity
are very different properties, and influence network topol-
ogy in correspondingly different ways. Combining equa-
tions (1) and (3) as a product of two preferential attach-
ment rules and normalising gives,

Π(kj , xij) =
f(kj)e−α(1−xij)

∑
l f(kl)e−α(1−xil)

, (4)

where the probability Π is explicitly a function of two
independent variables, the vertex degree kj and vertex
similarity xij . The preferential attachment rules are com-
bined as a product such that they function independently
and with equal weighting after normalising. Equation (4)
is the governing equation describing network growth in
the current model. More specific governing equations are
given in Sections 2.1 to 2.3 for each distinct type of vertex
property and assortative mixing. Note that equation (4)
reduces to equation (1) if all the vertices are identical, and
the similarity between all vertex pairs is one.

The model is motivated by networks where the dom-
inating influence on the formation of assortative mixing
is the vertex similarity, and provides a simple underly-
ing mechanism capable of generating complex mixing pat-
terns, particularly for hierarchical properties where mixing
can occur across many generations of a specified hierarchy.
Some networks may alternatively exhibit mixing patterns
between particular vertex types (e.g. for discrete proper-
ties), where there is effectively a different homophily be-
tween specific vertex properties or types, which cannot be
explained simply by the influence of vertex similarity. In
this case, the governing equation can be generalised to the
form,

Π(kj , xij) =
f(kj)e−αij(1−xij)

∑
l f(kl)e−αil(1−xil)

, (5)

but this proves increasingly complex to utilise with more
than a couple of vertex properties. In this case, alternative
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models may be better suited to networks with certain very
specific mixing patterns, such as re-wiring models which
can generate an exact mixing pattern [26], but do not
provide a realistic mechanism for network growth.

Although we focus on assortative mixing in this study,
it is important to note that some vertex properties show
disassortative mixing. For example, biological and tech-
nological networks tend to be disassortative by vertex de-
gree [16], but networks can also be disassortative with
respect to non-topological parameters.

To model network growth with a homophily between
“dissimilar” vertices, we simply reverse the dependency on
similarity in the governing equation, such that the govern-
ing equation for disassortative mixing is given by,

Π(kj , xij) =
f(kj)e−αxij

∑
l f(kl)e−αxil

. (6)

In Sections 2.1 to 2.3 we present specific implementations
of the model for particular types of vertex properties.
The behaviour of the model is investigated in detail for
discrete properties and also for hierarchical properties in
Sections 3.1 and 3.2 respectively. The influence of the ho-
mophily in the model can be studied effectively for discrete
vertex properties where the influence of vertex similarity
is relatively simple, and a model for hierarchical properties
enables a more detailed investigation into the influence of
vertex similarity.

2.1 Discrete properties

For a given vertex property the vertex similarity is defined
between zero and one, such that there is no similarity be-
tween vertices i and j if xij = 0, and the vertices have the
same property value if xij = 1. These are the only possible
values of vertex similarity for discrete vertex properties,
and thus in this case the model reduces in complexity to
a tendency for vertices to link to identical vertices. For
all other property types, the model explicitly considers a
range of similarity values. For example in a social net-
work model which accounts for the sex of individuals in
the network, two individuals are either the same sex, and
xij = 1, or different sex, and therefore xij = 0 with respect
to this particular property. Hence the vertex similarity for
discrete properties can be expressed in terms of the delta
function,

xij = δpipj , (7)

where pi is the property of vertex i, and δpipj = 1 if
pi = pj , otherwise δpipj = 0. The governing equation can
then be rewritten as,

Π(kj , δpipj ) =
f(kj)e

−α(1−δpipj
)

∑
l f(kl)e−α(1−δpipl

)
. (8)

We use the assortativity coefficient defined by Newman
to measure the extent of assortative mixing in networks,
which is calculated from the values of a mixing matrix [25].
A given value in a mixing matrix est is the fraction of

edges in a network which link a vertex of property s with
a vertex of property t, where we use the indices s and t
to avoid confusion with the vertex indices. The matrix is
symmetrical for undirected networks, and for any network
satisfies the expressions,

∑

st

est = 1,
∑

t

est = as,
∑

s

est = bt, (9)

where the a and b values are the row and column sums
respectively. The assortativity coefficient r is defined in
the range −1 < r < 1 where r = 0 means no assortative
mixing, and for discrete properties is given by the expres-
sion,

r =
∑

s ess −
∑

s asbs

1 − ∑
s asbs

. (10)

The numerator measures the difference between observed
diagonal values in the matrix where edges connect ver-
tices with the same property, and the diagonal coefficient
values if there were no assortative mixing, as given by the
product asbs. A derivation of the resulting variation of the
assortativity coefficient with the homophily and number
of discrete properties is presented in the Appendix, and
we show that,

r =
1 − e−α

1 + (np − 1)e−α
, (11)

for assortative mixing, where np is the number of discrete
properties. We briefly note that in some problems or ap-
plications it may be useful to determine a more localised
measure of assortativity, which to our knowledge has so
far not been considered. Assortativity in localised areas of
a network may not be captured when averaged across an
entire network. The definitions above and for other types
of properties can be extended to communities or to indi-
vidual vertices, where a mixing matrix is constructed for
each vertex and considers only those edges incident on a
given vertex. This also leads to the concept of an assorta-
tivity distribution, and we hope to investigate these ideas
in future work.

2.2 Hierarchical properties

A natural extension of a classification by discrete prop-
erties is a hierarchical classification scheme. Such a clas-
sification is rarely used in network models, but we argue
that this is a more appropriate and accurate method for
modeling many vertex properties. A similar classification
model was developed by Watts et al. to model search in
social networks [40]. For example, social properties such
as race and language may be more effectively modeled in
this way. Languages are often organised into groups of re-
lated languages such as the Indo-European group, which
can be subdivided into groups such as Celtic, Germanic,
Slavic etc., and similarly with race. An example of a hier-
archical classification is shown in Figure 1, which shows a
small subset of the Google internet directory.
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ChemistryBiology

Google

Science

Physics

Astrophysics

Ecology Microbiology

Genetics PhysicalParticle
Inorganic

Fig. 1. Small subset of the Google internet directory.

This hierarchical classification is used to describe web-
page content, but a similar classification could also be used
to describe scientific specializations in a collaboration or
citation network. Businesses typically operate using a hi-
erarchical classification of employees, and also large corpo-
rations are often subdivided into smaller company units.
A hierarchical classification can be reduced to a discrete
classification at a particular generation of the hierarchy,
which can be useful for certain types of analysis. However,
a lot of detail may be lost using such an approach, and
we postulate that assortative mixing extends across many
generations of such classifications. For example, a webpage
describing inorganic chemistry will tend to link to other
webpages about inorganic chemistry, but may also link to
pages describing physical chemistry with a greater prob-
ability than pages describing genetics. We allow a given
vertex of a network (e.g. a webpage) to be associated with
multiple classifications in the hierarchy, for example a web-
page may describe both physical and inorganic chemistry.

We define the vertex similarity for hierarchical prop-
erties by the expression,

xij = 1 − gij

G
, (12)

where gij = max(di, dj) is the number of generations back
to the lowest common ancestor of vertex i and vertex j in
the hierarchy, and di, dj are the distances to the lowest
common ancestor of i and j. G is the total number of
generations in the tree, ignoring the root which is defined
as generation zero. If the distances di and dj are different,
one of the vertices is defined at a lower generation than
the other (a more detailed definition), in which case the
maximum distance to the lowest common ancestor should
be used.

Using this definition of vertex similarity, the governing
equation becomes,

Π(kj , gij) =
f(kj)e−αgij/G

∑
l f(kl)e−αgil/G

. (13)

We define a new measure of assortativity for hierarchical
vertex properties, such that the assortativity coefficient is

given by the expression,

r =
1
G

G∑

i=1

rgi (14)

where rgi is the assortativity coefficient for discrete prop-
erties at the ith generation of the hierarchy and rg0 is
the root node. This is an average of the assortativity co-
efficient in each generation of the hierarchy and provides
a measure of assortativity across all generations. If there
is no additional mixing between properties in generations
higher than the leaf classifications, this expression reduces
to the assortativity coefficient for discrete properties at the
leaf or lowest generation of the hierarchy.

2.3 Other properties

A network may also show assortative mixing by other
types of vertex properties, notably including scalar or vec-
tor properties. For example, age or income in a social net-
work, or hydrophobicity or pKa in biological networks are
all scalar properties. The spatial distribution of vertices
in a network is an example of a vector property, for exam-
ple, individuals are more likely to know other individuals
who live or work in the same or nearby location in a social
network. Scalar properties may also be either discrete or
continuous, depending on the property or the accuracy re-
quired. The most well studied type of assortativity is based
on vertex degree, which is a discrete scalar property. Ver-
tex degree is neither static nor inherent to vertices, how-
ever, and therefore other models are more appropriate for
assortative mixing by degree.

There are a number of possible alternative definitions
of vertex similarity based on scalar or vector properties,
which may be suitable depending on the specific system
being modeled. We suggest a simple form for the vertex
similarity given by,

xij =
1

1 + |pi − pj | , (15)

where pi and pj are the properties of vertices i and
j as defined previously (scalar or vector). A similar
measure to the homophily between scalar properties is
an affinity measure assigned to vertices in a paper by
Gómez-Gardeñes [43]. In their case, a preferential attach-
ment rule is restricted to some tunable “neighbourhood”
of affinity values for a given vertex addition, which gen-
erates increased clustering. This approach is relatively
coarse-grained and is highly restrictive for vertices not
contained in a given neighbourhood. Such a model may
be appropriate in some specialised applications, but we
suggest that generally a more detailed account of vertex
properties is required for an improved model.

With the dependency described in equation (15), the
governing equation for assortative mixing is given by,

Π(kj , pi, pj) =
f(kj)e−α|pi−pj |/(1+|pi−pj |)

∑
l f(kl)e−α|pi−pl|/(1+|pi−pl|) . (16)
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Assortative mixing by scalar properties is calculated in
terms of a mixing matrix as for discrete properties de-
scribed in Section 2.1, which must also satisfy equa-
tion (9). The assortativity coefficient is given by,

r =
∑

st st(est − asbt)
σaσb

, (17)

where σa and σb are the standard deviations of the dis-
tributions of the row and column sums, as and bt, and a
similar expression can be used to calculate the coefficient
for vector properties.

2.4 Community structure

A focus of the current work is on the topology of the net-
works produced by the model defined above, and in par-
ticular the community structure. A number of algorithms
have been proposed in the literature for detecting com-
munity structure in a network [9,44]. We choose to use
the method of Girvan and Newman [45], since it has been
shown to perform favorably compared to alternative meth-
ods, and since a closely related method is able to measure
the extent of community structure in a network, which is
effectively a measure of the accuracy of a given division
into communities [27]. A faster algorithm has also been
developed by Newman which is useful for detecting com-
munity structure in very large networks [46].

The algorithm of Girvan and Newman removes edges
successively with the highest betweenness, and recalcu-
lates betweenness values after each edge removal. This re-
calculation stage is crucial to the success of the algorithm
in correctly detecting community structure. Betweenness
measures the number of shortest paths which pass through
a given edge or vertex, and edge betweenness can be ex-
pressed formally as,

CB(e) =
∑

i�=j

σij(e)
σij

, (18)

where σij(e) is the number of shortest paths between ver-
tices i and j passing along an edge e, and σij is the total
number of shortest paths between vertices i and j. Edge
betweenness is an effective property to use for detecting
community structure since those edges which connect ver-
tices between communities will on average have a higher
betweenness than edges connecting vertices in the same
community.

The output of the algorithm is an edge removal se-
quence, which is commonly used to construct a dendro-
gram to represent a hierarchy of possible community divi-
sions. In order to determine the highest quality community
division specified by the resulting dendrogram, a measure
called the modularity is introduced which represents the
extent of community structure [27]. The modularity is cal-
culated from the values of a mixing matrix using a similar
principle to the calculation of assortativity coefficients de-
scribed above. An element of this “community” mixing
matrix euv represents the fraction of edges in the original

network that link vertices in community u with vertices
in community v in the current community division (as
opposed to properties s and t in the case of the mixing
matrix for assortative mixing). A high quality community
structure division gives relatively large fractions for the
values euu along the diagonal of the community mixing
matrix. The modularity, Q, is given by,

Q =
∑

u

(
euu − a2

u

)
(19)

where au are the values of the row sums of the commu-
nity mixing matrix. We use this measure extensively in
simulations, in order to measure the extent of community
structure as the homophily in the model is varied. For a
given network, the modularity can be calculated for each
community division specified in the resulting dendrogram,
and the maximum modularity gives the highest quality
community division obtained.

3 Results and discussion

3.1 Discrete properties

The behaviour of the model described in Section 2 was
investigated using numerical simulations over a range of
homophily values. To test the model for discrete proper-
ties, vertices were randomly assigned to one of 10 discrete
properties or types, and simulations were run to generate
networks with 200, 500 or 1000 vertices. Note that if the
vertices are then grouped according to their property, this
method produces approximately equal group sizes, with a
bell-curve distribution (Binomial, approximated by Pois-
son). It is simple to run simulations of the model with any
arbitrary group size distribution, by defining the required
property distribution, and assigning properties to vertices
using sampling without replacement.

The BA preferential attachment rule was used with
m = m0 = 2 which gives (undirected) networks with an
average degree k ∼ 4, where m is the number of edges
added for each new vertex (see Section 2). Simulations
were run for every integer homophily value from 0 to 20,
which is sufficiently large such that all parameters of in-
terest have reached asymptotic values. Figure 2 shows the
variation of the assortativity coefficient and modularity
with the homophily. Unless otherwise stated we ignore all
community divisions other than the highest quality divi-
sion according to the modularity value, for a given net-
work and corresponding dendrogram. Hence we use the
term modularity to refer to the modularity of the highest
quality division. Every data point is calculated from an
average of 100 network simulations in order to calculate
the average behaviour of the network “ensemble” with the
specified parameters, and error bars are plotted to illus-
trate the variation within the ensemble.

Figure 2 shows that the assortativity varies from ap-
proximately zero when the homophily is zero (no tendency
for vertices to connect to similar vertices) to close to maxi-
mum assortativity at large homophily. The increase is also
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Fig. 2. Variation of the assortativity coefficient, r, (upper) and
the modularity, Q, (lower) with the homophily, α, for vary-
ing N .

rapid and immediate as the homophily is increased, and
maximum assortativity is reached at a homophily value of
around 7 or 8. Also plotted is the analytical function for
the variation of the expected assortativity coefficient with
the homophily given by equation (11), for N → ∞, finite
k and np = 10. The difference between the simulated re-
sults and the predicted variation for small N reflects the
biases discussed in the Appendix.

The lower plot of Figure 2 shows that the modular-
ity or extent of community structure in the networks also
increases with the homophily, but the increase is less im-
mediate than the increase in the assortativity. The two
plots show that the formation of assortative mixing in
the resulting networks drives the formation of commu-
nity structure, and that a certain threshold assortativ-
ity is required before any significant community structure
appears. The plots indicate that this threshold occurs at
approximately r ∼ 0.5. Recall that the method of Girvan
and Newman for detecting community structure will al-
ways produce a hierarchical set of community divisions,
since the output of the algorithm can be represented as a
dendrogram. Modularity values are typically between 0.3
and 0.7 [27], which explains why networks grown with zero
homophily have a non-zero modularity. The network size
has only a minimal influence on the observed parameter

Fig. 3. Variation of the property community correlation, rpc,
(upper) and the number of communities (lower), with the ho-
mophily, α, for varying N .

variation with homophily. The asymptotic values of the
assortativity and modularity are slightly less for smaller
networks, since a greater fraction of edges connect between
communities (and different properties) in smaller networks
than larger networks.

These plots clearly show that the model is able to gen-
erate networks with both assortative mixing and com-
munity structure. Additionally, the plots indicate that
the increased assortative mixing is directly responsible
for the increased community structure in the networks.
This is confirmed more clearly by the upper plot of Fig-
ure 3, which plots the correlation between vertex proper-
ties and community structure for the same networks used
in Figure 2.

We define the property community correlation, rpc, by
the expression,

rpc =
∑

c Nc

N
, (20)

where N is the network size or number of vertices, and Nc

is the largest number of vertices with the same discrete
property in a given community, summing over all commu-
nities. If the vertices in each community have the same
property or type, then rpc = 1, and if there is no linkage
between vertex properties and community structure, the
correlation takes some non-zero value, depending on the
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number of defined properties. For example, if a model was
considering the sex of individuals in a social network, the
correlation would be greater than 0.5 even with no link-
age. The plot shows that the correlation increases with the
homophily, and that the asymptotic value is very close to
one. This confirms that assortative mixing is directly re-
sponsible for the formation of community structure in the
model, since otherwise the probability of the correlation
being so close to the maximum value is extremely small.
Also the increase in the correlation is not as immediate
as that of assortative mixing, but more immediate than
the formation of community structure, which is expected
if the formation of assortative mixing drives the formation
of community structure in the model. The observed corre-
lation between vertex properties and community structure
in our networks reflects the same type of correlation found
in a wide range of real networks between vertex properties
and network topology, as also shown by Leicht et al. [24].

The lower plot of Figure 3 provides an alternative vi-
sualisation of this correlation, since the average number
of communities tends to an asymptotic value of 10 around
a homophily of 7 or 8. This is the same as the number
of discrete properties, confirming the observed correlation
between property and community. The fact that larger
networks are divided into more communities when there
is no homophily is an artefact of the community structure
algorithm. In this regime there is no significant commu-
nity structure, and random variation in topology tends to
result in larger networks being divided into more commu-
nities.

Note that assortative mixing is just one mechanism
which can produce community structure, and we do not
suggest this is the only cause of community structure for-
mation in real networks. For example, many real networks
may be best modeled with relatively low homophily, in the
regime where there is insufficient assortativity to drive the
formation of significant community structure. To under-
stand the complete set of forces which influences the for-
mation of community structure in networks requires more
work in a number of directions.

The formation of community structure in networks has
a direct influence on a number of other topological pa-
rameters, such as the clustering coefficient and the aver-
age shortest path. The clustering coefficient measures the
fraction of transitive triples or triangles between nearest
neighbours, and the clustering coefficient of vertex i, Ci,
is given by,

Ci =
2Ei

ki(ki − 1)
, (21)

where ki is the degree or number of nearest neighbours of
vertex i, and Ei is the number of edges connecting between
these nearest neighbours [5,9]. The clustering coefficient
of a network is calculated by averaging Ci over all vertices
of the network. In a network with significant community
structure, there are relatively few edges connecting be-
tween communities, and hence the average shortest path
is greater than in a similar network with less community
structure. The clustering coefficient is also greater in net-
works with more community structure for similar reasons.

Fig. 4. Variation of related network properties with the ho-
mophily, α, for networks with N = 500.

Such dependencies are observed if the clustering coeffi-
cient and average shortest path are plotted against the
homophily, as shown in the Online Supplementary Mate-
rials. These parameters show a similar dependency on the
homophily to the community structure, and increase at
the same threshold assortative mixing.

In the current model, the community structure can
be thought of as the primary parameter influenced by
assortative mixing, and other topological parameters as
secondary parameters, which are influenced by the forma-
tion of community structure, rather than the formation of
assortative mixing. This notion is supported by the sig-
nificant variation found in the clustering coefficient and
average shortest path in a given network ensemble, where
networks contain the same modularity or extent of com-
munity structure.

Depending on the average degree and number of com-
munities, the clustering coefficient of networks produced
by the model may be relatively large (C ∼ 0.40 is found
with N = 200), and of the order of the high clustering val-
ues observed in many real networks [28]. We do not expect
the formation of assortative mixing or community struc-
ture to be the primary influence on clustering in real net-
works, but we propose that these are contributing factors
which often have some influence on the observed cluster-
ing. Other mechanisms have been suggested and studied
which are likely to have more influence on clustering in
most networks, including triad formation and vertex age-
ing [47,48]. Notice also that at high homophily, the aver-
age shortest path of the networks is still small relative to
the network size, and the networks can still be considered
to be “small-world” networks [5].

Figure 4 provides an additional illustration of the re-
lationship between the parameters discussed, which plots
the variation of selected parameters with the homophily
for networks with N = 500.

The interdependence of the parameters discussed can
be seen in Figure 4 by the homophily value at which each
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of the respective parameters starts to increase. The as-
sortativity increases immediately, which drives the corre-
lation between property and community, which in turn
drives the formation of community structure and related
topological properties. Equivalent plots for networks with
N = 200 and N = 1000 show the same qualitative param-
eter independence and variation in profile.

We have studied the variation of network parameters
with the homophily while varying the network size, but
it is also instructive to vary the network average degree,
which is another primary parameter of the model. Equiv-
alent plots to Figures 2 to 3 for varying average degree
are presented in the Online Supplementary Materials sec-
tion of this paper. The variation of the assortativity coef-
ficient with average degree for a given homophily is mini-
mal, and tends to the predicted behaviour as k decreases
for fixed N , i.e. as N/k → ∞. However, the average de-
gree has a strong influence in the ability of the commu-
nity structure algorithm to detect high quality divisions,
such that at low homophily, the average modularity drops
rapidly as k increases. This is intuitive, since if a network
is highly connected, random variation in topology is less
likely to produce community-like structures, and hence the
quality of the divisions which are always produced by the
algorithm is lower.

The average degree also influences the clustering coef-
ficient and average shortest path of the networks produced
by the model, where the clustering coefficient increases as
k increases, and the average shortest path decreases as
k increases. These variations are both intuitive, and the
relationship between these parameters has already been
studied in detail in a number of established network mod-
els [28,49].

Another important topological parameter is the de-
gree distribution, which has been a central component of
much network research since Barabási and Albert devel-
oped the so-called “scale-free model” [33], which is capable
of reproducing the power-law degree distribution observed
in many real networks [8,12]. Figure 5 shows the degree
distribution for networks with N = 1000 produced from
the current model, averaged over 50 networks for each
homophily, using a log-log scale. A power-law degree dis-
tribution is given by,

P (k) ∝ k−γ , (22)

and for the scale-free model, the exponent γ = 3. Hence
the gradient of a plot of log(Pk) against log(k) for the
scale-free model has a slope of –3.

Figure 5 shows that the degree distribution of networks
with homophily up to α = 6 is a power-law, with the ex-
ponent γ = 3 as predicted by the scale-free model. Recall
that since we use a BA preferential attachment rule in
simulations, in this case the model reduces to the scale-
free model at α = 0. As the homophily is increased beyond
α = 6 the distribution deviates from an exact power-law,
and it can be shown that this deviation starts at the same
homophily value independent of network size. The extent
of deviation is smaller if the network size is large in com-
parison to the number of discrete properties. Since there

Fig. 5. Degree distribution for networks with N = 1000, and
varying homophily, α, in the model.

is some deviation in the degree distribution at large ho-
mophily, we used the method of Maslov et al. [18] to give
randomised versions of the generated networks in order to
check that the change in degree distribution alone cannot
explain the other changes in network topology discussed
above. Their method works to maintain the exact degree
distribution of the original network after randomisation.
The randomised networks do not show increased assorta-
tivity and community structure as homophily is increased
(see Online Supplementary Materials), proving that the
degree distribution is not responsible for the observed
changes in assortativity and topology. Rather, the degree
distribution deviates from a power-law beyond α = 6 due
to other topological changes, and primarily the formation
of community structure. The same result was found when
this randomisation method was applied to networks gen-
erated with hierarchical properties (see Sect. 3.2).

The observed deviation from a power-law distribution
at large homophily may model a constraint present in real
networks. It has been shown that a model which incor-
porates the aging of vertices can produce highly clustered
networks, but if the speed of aging is increased, the degree
distribution of the networks also deviates from the power-
law distribution observed with slower aging [6]. Many net-
works are known to approximate power-law distributions,
but which exhibit some deviation in the tail of the distri-
bution [6].

We focus on assortative mixing but it is interesting
to test the behaviour of the model for properties which
tend to connect to “dissimilar” vertices and show some
degree of disassortative mixing. In this case, the param-
eter which has the strongest influence on the resulting
behaviour is the number of discrete properties or vertex
types. Results for disassortative mixing for a varying num-
ber of discrete properties are shown in the Online Sup-
plementary Materials section. The assortativity coefficient
follows the behaviour predicted by equation (31), where
the extent of disassortative mixing increases with increas-
ing homophily, but decreases rapidly as the number of
properties increases.

More significantly, disassortative mixing does not
result in any increase in the extent of community
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structure unlike assortative mixing, and similarly has
minimal influence on other topological parameters such as
the clustering coefficient and average shortest path. Dis-
assortative mixing has no tendency to produce groups of
similar vertices, since vertices cannot group according to
“dissimilarity” or the difference in properties. In fact, dis-
assortative mixing has a small tendency to decrease any
clustering that is present due to random variation when
the homophily is zero, since this type of mixing tends to
separate rather than group similar vertices. These results
highlight a very important difference between assortative
and disassortative mixing and their influence on network
topology.

3.2 Hierarchical properties

The behaviour of the model was investigated for hierar-
chical vertex properties using simulations to generate net-
works of 200, 500 or 1000 vertices, with an average degree
k = 4 and using the BA preferential attachment rule as
in Section 3.1. A regular hierarchical classification with a
branching ratio of 2 and five generations (G = 5) was cho-
sen, and vertices were randomly assigned to one of the 32
“leaves” of this hierarchy. Note that it is simple to apply
the model to non-regular hierarchies, and to assign net-
work vertices to higher generations and multiple positions
in the hierarchy. Figure 6 shows the variation of the as-
sortativity coefficient and modularity with the homophily
in the resulting networks.

The upper plot shows the variation of two types of
assortativity coefficient, for both the coefficient for hier-
archical properties defined in equation (14) and for an
equivalent coefficient for discrete properties where each
leaf of the hierarchy is considered to be a discrete prop-
erty. The difference between these coefficient values for
the same network size and homophily illustrates the ad-
ditional assortative mixing present in higher generations
of the hierarchy. If there was no additional mixing in the
higher generations, the difference between these coefficient
values would be minimal (and tends to zero as N → ∞, as
discussed). However, the difference between these values is
significant in most regimes of the homophily, and demon-
strates the importance of using a hierarchical model to
capture the true extent of assortative mixing in such net-
works.

The assortativity increases with the homophily and
network size as for discrete properties, but the increase is
less rapid and occurs over a wider range of homophily. This
reflects the influence of non-integer vertex similarity val-
ues (between zero and one). As the homophily increases,
the extent of additional mixing in higher generations of
the hierarchy decreases, and the behaviour of the model
becomes more similar to that for discrete properties. The
lower plot of Figure 6 confirms that assortative mixing
between hierarchical properties in the model also drives
the formation of community structure, and indicates that
a similar threshold assortative mixing of approximately
r ∼ 0.5 is required for the formation of community struc-
ture. Interestingly, the threshold values for assortative

Fig. 6. Variation of the assortativity coefficient, r, (upper) and
the modularity, Q, (lower) with the homophily, α, for vary-
ing N .

mixing between discrete and hierarchical properties are
the same only if we account for mixing across all genera-
tions in the hierarchy. If we only calculate the assortative
mixing at the lowest generation (the discrete measure in
Fig. 6), the threshold value occurs around 0.15 < r < 0.20.
We speculate that the observed threshold may be univer-
sal and correspond to a phase transition, but more work
is required to determine the exact nature of the observed
threshold.

Other topological parameters such as the clustering
coefficient and average shortest path show a similarly less
rapid increase with homophily when compared with the
same variation observed for discrete properties (see On-
line Supplementary Materials). The degree distribution
of networks grown with assortative mixing of hierarchi-
cal properties also shows a very similar variation to that
observed for discrete properties, where the distribution
follows a power-law, also with a deviation in the tail of
the distribution at high homophily.

It is also interesting to observe the variation of the
property community correlation for hierarchical proper-
ties, where we apply the definition for discrete properties
to each generation of a hierarchical property. In this case
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Fig. 7. Variation of the property community correlation, rpc,
for N = 500 (upper) and the number of communities (lower),
with the homophily, α, for varying N .

the quantity Nc in equation (20) is the largest number of
vertices with the same property for the specified genera-
tion of the hierarchy in a given community. For a given
generation, the number of unique classifications or nodes
is equal to the number of “discrete” properties. For exam-
ple, for the hierarchical subset shown in Figure 1, rpc for
g = 2 is the rpc value for the “discrete” properties Physics,
Biology and Chemistry. Figure 7 shows the variation of
the property community correlation for each generation
of the current hierarchy with 5 generations for N = 500,
together with the variation of the number of communities
for varying network size.

Figure 7 shows that the property community correla-
tion generally increases with homophily for each genera-
tion as expected, where g = 5 refers to the “leaf” gener-
ation, and g = 1 is the highest generation, ignoring the
root node. The correlation for higher generations is gener-
ally greater, which reflects the increased assortative mix-
ing in higher generations, as observed in Figure 6. Note
also the correlation values at zero homophily are lower for
lower generations in the hierarchy (larger g), since there
are more “discrete” properties at lower generations, and
so the correlation due to random mixing is reduced.

Fig. 8. Visualisation of an example network generated with
hierarchical vertex properties, where α = 10 and N = 500.

The correlation values are calculated for the optimum
community structure based on the modularity value, and
the lower plot of Figure 7 shows that the optimum commu-
nity structure is found to have around 10–15 communities
at high homophily. Therefore this “optimum community
structure” does not reflect any real community structure
due to assortative mixing at the lowest level of the hi-
erarchy, where there are 32 different classifications. This
explains why the value of the property community corre-
lation for g = 5 at large homophily is not close to 1.0,
unlike the values for 1 < g < 4 in this case.

Since the community structure is driven by assortative
mixing of hierarchical properties, it seems intuitive that
the resulting community structure may also exhibit some
kind of hierarchical structure. This type of community
structure is indeed observed as the homophily increases,
which can be shown by viewing the resulting networks
using visualisation software. Figure 8 shows an example
network with α = 10 and N = 500, produced using the
freely available Cytoscape software package [50].

The network visualisation indicates a hierarchical com-
munity structure, where a division into two communities
is clear, which can be further subdivided into smaller com-
munities, and so on. Naturally the divisions become less
clearly defined the more the communities are sub-divided.
Images in the Online Supplementary Materials section
clarify the hierarchical community structure, where colors
are used to depict vertex properties at each generation
in hierarchy. The resulting images illustrate the topolog-
ical community divisions, and show a strong correlation
between vertex properties and community structure at
equivalent hierarchical generations.
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Fig. 9. Variation of the “modified” property community cor-
relation, rpc, with the homophily, α, for N = 500. Error bars
are omitted for clarity.

Some measures of hierarchy have been proposed in the
literature [51,37], but these measure hierarchy based on
individual vertices rather than communities. We hope to
develop a suitable measure of the extent of hierarchical
community structure in future work, and encourage other
research towards this goal. Many real networks are known
to have a hierarchical community structure such as biolog-
ical and communication networks [52,53], and a suitable
measure for analysing hierarchical community structure
would prove very useful for the analysis of these networks.

Since assortative mixing by hierarchical properties has
been shown to produce hierarchical community structure,
the “optimum” community structure as measured by the
modularity is perhaps not the best community division to
consider. A hierarchical community structure can be di-
vided into communities at a number of possible levels, and
the correlation between vertex properties and a hierarchi-
cal community structure can alternatively be based on the
community structure corresponding to a specified genera-
tion of the hierarchy. For example in the current simula-
tions, rpc for g = 1 can be calculated based on the division
of a resulting network into two communities. Similarly, rpc

for g = 5 can be calculated based on the division of a net-
work into 32 communities. Figure 9 shows the variation of
the property community correlation with the homophily
when calculated using this alternative approach.

Figure 9 shows that the rpc value for g = 5 using this
modified definition has an asymptotic value close to the
maximum, confirming that there is both community struc-
ture and property community correlation at the lowest
generation in the hierarchy. The disadvantage of this defi-
nition of rpc is that there is a large variation in the values
in the ensemble at large homophily, since the nature of
the community structure algorithm means that the exact
community divisions may not always reflect the property
correlations producing the community structure. We pro-
pose that the two alternative definitions of rpc presented
for hierarchical properties are both useful, depending on
the particular problem of interest.

Disassortive mixing by hierarchical properties pro-
duces similar behaviour to that observed for discrete prop-

erties, where the extent of disassortative mixing increases
with homophily, but the modularity is unchanged, and
there is no measureable community structure. No type of
disassortative mixing can drive the formation of commu-
nity structure, in clear contrast to assortative mixing.

We have chosen to study the behaviour of the proposed
model in detail for ensembles of model networks, where
vertex properties are generic and are defined only by their
type (e.g. discrete or hierarchical). In this way we can
study the inter-relationship of model parameters, and the
range of network topologies generated by the model. We
emphasise that the model produces ensembles of networks
with a range of topological parameters for a specified com-
bination of input parameters, as shown by the error bars
illustrated in most figures in this paper. Therefore, when
the model is applied to real networks, we can expect to
reproduce large-scale parameters such as the assortativity
coefficient or modularity by tuning the homophily, but we
would not expect to reproduce the exact mixing pattern
or community structure, due to the random nature of the
growth processes in the model.

As suggested by other authors [26], we expect that as-
sortative mixing is one factor which drives the formation
of community structure in real networks, but we would
not expect this to be the sole driving force. For example,
if we tune the homophily to reproduce the assortativity
coefficient for a given vertex property in a network, we
may observe a greater extent of community structure in
the real network than in the modeled network. This may
be due to both multiple assortativity types driving the
community structure, or other forces which are currently
unaccounted for. More research on problems relating to
community structure in a wide range of network systems
is needed before we understand the complete set of factors
which can influence the formation of community struc-
ture. We will present a more detailed discussion of some
of these issues, and applications of the model to systems of
real networks in future work. We also hope to determine
whether the observed assortative mixing threshold is con-
sistent to all network types, and whether this corresponds
to a phase transition point.

4 Summary

In summary, we have modeled a single mechanism which
drives the formation of assortative mixing in networks
based on generic, non-topological vertex properties, and
to a varying extent based on the tunable parameter in
the model, called the homophily. We have shown that
the formation of assortative mixing beyond a threshold
r ∼ 0.5 directly drives the formation of community struc-
ture, which in turn influences a number of related topolog-
ical parameters. The variation of network topology with
homophily has been studied in detail, including the corre-
lation between assortative mixing and community struc-
ture, and we have confirmed the direct relationship be-
tween these parameters in the model. We have studied
a new type of assortative mixing by hierarchical proper-
ties, and introduced a new definition of the assortativity
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coefficient to characterise this type of mixing. Addition-
ally, we have shown that the type of community structure
formed depends directly on the type of assortative mixing,
whereby a hierarchical community structure results from
assortative mixing by hierarchical vertex properties.

S.J. is a Michael Smith Foundation for Health Resarch Scholar.
We thank Genome Canada and the British Columbia Cancer
Foundation for funding, and Cenk Sahinalp and Misha Blenky
for critical discussion.

Appendix: Assortative mixing by discrete
properties

An analytical expression can be derived for the expected
variation of the assortativity coefficient with the ho-
mophily in the limit as N → ∞ for finite k, for discrete
vertex properties using equations (8) to (10). Since the
governing equation of the model describes the probabil-
ity of edge formation between vertices, the exact network
and corresponding parameter values produced by a given
simulation cannot be determined. The set of possible net-
works grown by the model for a specified homophily, net-
work size and average degree defines a network ensemble.
Within this ensemble, some networks may be generated
with a much greater probability than others, and we can
predict parameter values of a typical or average network
in the ensemble, or the expected parameter values.

The governing equation is defined in terms of a product
of two distinct functions of vertex degree and vertex sim-
ilarity with independent parameters, and hence the influ-
ence of these functions on the resulting system behaviour
is independent of each other when averaged across the re-
sulting network ensemble. This is true unless the vertex
property being considered is actually the vertex degree,
in which case the derivation presented below cannot be
applied.

Therefore we can derive an expression for the varia-
tion of the ensemble assortativity coefficient with respect
to the homophily, which applies for any function of vertex
degree, f(k). For finite networks, the resulting network
topology is biased slightly from the probabilities defined
in the governing equation, since in general there must al-
ways be a certain number of edges connecting vertices of
different properties and between different communities in
a network. However, if we let N → ∞ as k is kept finite,
these biases tend to zero, and an analytical derivation is
possible in this regime.

The expected assortativity coefficient can be derived
by considering the average or expected values of the mix-
ing matrix est for a given homophily, which we call the
ensemble mixing matrix. The exponential term in equa-
tion (8) can only take two possible values, either 1 if
pi = pj or e−α otherwise. These are the two probabil-
ity values influencing edge formation between vertices in
the growing network. Therefore, the ratio of the number
of edges between vertices with the same property, over the
number of edges between vertices with different properties
should be equal to the ratio of the respective probabilities,

averaged across the network ensemble. If we let est refer
to the values of the ensemble mixing matrix, we can write,

est,∀s�=t

est,∀s=t
= e−α, (23)

where the notation est,∀s�=t means those values est where
s �= t. If np is the number of discrete properties, the mixing
matrix dimensions are np x np, and by symmetry the row
and column sums of the ensemble mixing matrix are 1/np

if vertices are assigned to properties at random. Using the
notation of equation (9),

∑

s

est =
∑

t

est =
1
np

. (24)

Equations (23) and (24) define a set of constraints which
determine the ensemble mixing matrix values. It can be
shown that,

est =
1

np(1 + (np − 1)e−α)
∀s = t

est =
e−α

np(1 + (np − 1)e−α)
∀s �= t, (25)

are the solutions which satisfy the constraints defined in
equations (23) and (24) for an np x np mixing matrix. The
assortativity coefficient of the ensemble is determined by
substituting the values of the ensemble mixing matrix in
equations (24) and (25) into equation (10) to give,

r =
1

(1+(np−1)e−α) − 1
np

1 − 1
np

, (26)

and after rearranging,
r =

1 − e−α

1 + (np − 1)e−α
. (27)

Equation (27) describes the variation of the ensemble as-
sortativity coefficient with the homophily, for a given num-
ber of discrete properties. Note that this expression is valid
for α ≥ 0 and for integer np ≥ 2 since we assume there is
more than one discrete property. Alternatively, if we know
the assortativity coefficient of a network and the corre-
sponding number of discrete properties, we may wish to
determine the best homophily value for modeling the net-
work. If we assume that a network with an assortativity r
is a typical network of the corresponding ensemble, then
a suitable homophily for modeling the network growth is
given by,

α = ln
(

1 + r(np − 1)
1 − r

)

. (28)

We can use a similar approach to derive an expression for
the ensemble assortativity coefficient for properties which
show disassortative mixing, where edges tend to connect
between dissimilar vertices. If a property can take many
possible discrete values, disassortativity means that a
vertex tends to connect preferentially to a vertex with
any property other than the same property as itself. This
is relatively rare for discrete properties, and is generally
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more relevant to scalar properties, for example vertex
degree, but we include the analysis for completeness
as this only requires a simple extension of the above
analysis. If vertices tend to connect to dissimilar vertices,
then equation (23) becomes,

est,∀s=t

est,∀s�=t
= e−α. (29)

Equation (24) is still valid, and using the constraints
defined in equations (24) and (29) gives,

est =
e−α

np(e−α + np − 1)
∀s = t

est =
1

np(e−α + np − 1)
∀s �= t. (30)

Finally, using these mixing matrix values and substi-
tuting equations (24) and (30) into equation (10), after
simplification gives,

r =
e−α − 1

e−α + np − 1
, (31)

α = ln
(

1 − r

r(np − 1) + 1

)

. (32)
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